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The Mean-Variance Portfolio (MVP) of Markowitz [1] is a popular model for investment 
diversification and management that helps to achieve maximized profits with reduced 
risk. It involves search for the amount of money to invest in each asset given the sample 
covariance matrix of asset returns, which is a constrained quadratic programming (QP) 
problem typically addressed using standard optimization routines [2]. The QP in context

of large scale financial applications is a difficult problem because the sample covariance 
matrix of stock returns is very noisy and this misleads the optimization procedures. The
practical complication is that standard optimizers tend to overfit the noise while searching 
for solutions, and this leads to suboptimal results. One strategy for dealing with the noise 
is through statistical cleaning of the covariance matrix in advance [3].

An alternative strategy for building improved portfolios is to use connectionist learning 

machines [4],[5] in optimization tools. The connectionist machines carry out robust training 
of the model by flexible balancing the overfitting with the generalization performance. This 
flexibility is an advantage over other contemporary search algorithms for such optimization 
tasks, like evolutionary algorithms and swarm intelligence [6],[7]. Popular connectionist 
approaches to the QP problem are the Hopfield neural networks (HNN) [5],[8] and the 
Multilayer Perceptrons (MLP) [9]. 
The behaviour of the Hopfield networks is described by an energy function that corresponds 
to the objective function of the optimization task [8]. The HNN features asympthotic 
stability as the training equation guarantees that the error will settle at a stable lowest  

energy state that represents the solution. However, since the model is nonlinear the error 
landscape has multiple equilibrium states, and the error evolution can settle at different local 
minima because of unsuitable initialization or appearance of mutually competing 
attractors [9]. Such frustrations mean that the network can fail to find acceptable solutions.

The Multilayer Perceptron networks have been considered for nonlinear programming [10]

since they have abilities to handle uncertain and unprecise data, and they show reliable 
performance on noisy practical data [11]. This version of the classical MLP network is 
elaborated to minimize an error function that mimics the objective function of the 
constrained quadratic programming problem. The network is calibrated using the error 
backpropagation learning algorithm, but it has a slow convergence rate because of
reliance directly on gradient descent search. Moreover, the MLP network depends 
critically on the initial conditions and this is a notoriously difficult issue.
Our research developed a QP optimizer with an embedded Multilayer Perceptron that 
elaborates on the good features of both: optimizers with stable convergence and neural 

networks with robust calibration. We implemented an original Connectionist Optimization
Machine (COM) suitable for finding portfolio allocations. Its distinctive features are: 
1) it conducts second-order search using the analytical derivatives of the neural network 
model,which leads to improved accuracy compared to the use of numerical derivatives 
(computed by differencing), and 2) it performs input denoising simultaneously with the 
learning of the model parameters, that is it removes the noise from the sample covariance 
matrix during calibration. It should be noted that adopting the framework of classical QP

optimizers enables easy accommodation of various constraints in the training procedures.
Mean-Variance Portfolio Analysis. We conducted experiments in portfolio estimation 

using 20 stocks from the technology sector (with tickers: GOOGL,AAPL,MSFT,MU,
INTC, CSCO, IDU,ADBE,TXN,AVGO,QCOM,AMT,HPQ,IBM,ORCL,NTAP,GLW,
AMAT,AMZN,LOGI). Daily closing prices of these stocks were downloaded from 
internet (1/6/2015 - 1/6/2017). The portfolio weights (indicating the allocations) were 

computed with an implementation of the proposed COM optimizer based on 
a primal-dual interior-point method for solving quadratic programming problems. 
The figure below shows the characteristics of the obtained portfolios using COM

in the standard deviation-mean space, known also as the risk-return space. One can 
see the mean-variance efficient frontier curve (shown in red) and 1000 randomly 
sampled portfolios (shown with red dots below the curve) computed starting from 
random allocations (using the rand() function in Matlab). The efficient frontier shows 
graphically the computed portfolios with the novel COM optimizer which can maximize 
the returns for the assumed risk. The investor can use such plots in order to select 
combinations of assets that can offer optimal returns with lower risk (they are on 
the efficient frontier curve). The portfolio with minimum standard deviation among

these on the efficient frontier is the minimum variance frontier portfolio.
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