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Statistical arbitrage (statarb) is a trading strategy that analyzes the dynamics of mispricing

in combinations of assets with the aim to exploit deviations from equilibrium levels in the 

markets [1],[2], and generate buy/sell trading signals (so as to make profits before participants

eliminate the arbitrage opportunities). The statarb technology identifies systematic market-

dependent components from a slected set of assets, and computes the residual price difference 

(spread) from the remaining stocks in the portfolio. The spread is actually the unexplained 

information by the systematic components, that is the idiosyncratic residual (a separate model 

is calibrated for the spread of each particular stock). One popular idea is that the spread 
evolution follows a stochastic mean-reverting process [2],[4],[8],[9],[10],[11]. The mean 
reverting behaviour suggests that price divergencies will return back to their average, and
this helps to take short/long positions as well as to build automated trading systems. 

The machine learning task in context of the statarb framework involves formulation of 
dynamic models for the spread and derivation of robust estimation algorithms (candidate 
assets are selected through search for cointegrating relationships with mean-reversion 
property). Dynamic models are necessary to account explicitly for the time dependencies 
in the spread series, because prices arrive sequentially in time (and their distribution is 
time-varying). Robust estimation algorithms are necessary as price returns often feature 
heavy-tailed characteristics [5], and standard Gaussian treatment cannot handle them 
plausibly. When spreads are obtained from price returns, they are expected to have similar 
statistical characteristics. They should be handled properly in order to achieve stable 
learning of the parameters, otherwise simply training with the Gaussian assumption 
leads to innacurate results. This reasoning motivates the increasing recent research 
interest into mixture spread models to explain non-Gaussian data.

Mixture models are popular in economics as they accurately capture data coming from 

time-varying non-normal distributions, and this helps to accommodatewell aberrant 
changes in time series arising from occasional events. A mixture model is a composition 
of submodels (each contributing a specific distribution with different specifications) 
which provide capacity to describe flexibly distributions of various shapes and stylized 
characteristics. Such combinations applied to spreads include: threshold autoregressive 
(TAR) models [6], logistic mixture autoregressive (LMAR) models [7], autoregressive 
hidden Markov models (AR-HMM) [8],[9], and regime-switching models (RSM) 
[5],[10],[11],[12]. A common feature in them is the maintenance of different means 
(representing trends) and variances (representing uncertainties).

The TAR models infer the mixture data distribution using threshold variables for level

segmentation. The LMAR models are more general and less sensitive to outliers as they 
use logistic functions to calculate the mixing proportions depending on the past history. 

Improved temporal convolution is alternatively achieved using unobserved (latent) 
state variables to guide the selection of the particular mixing component. Assuming 
that these latent variables are related through a Markov chain (the state change in the 
chain depends only on the most recent state carrying all information from the past), 
there have been devised two different kinds: AR-HMM and RSM models. 

The AR-HMM are implemented wtih constant transition probabilities to control regime 

changes, while RSM are implemented with dynamic transition probabilities. The RSMs 
are more sophisticated tools because their time-varying transitions imply that the model 

structure also changes dynamically. 

The discrete Markov regime-switching models are found suitable for learning 
mean-reverting spreads [5],[8],[9],[10],[11],[12] as they describe complex patterns 
(having non-Gaussian characteristics), like heterogeneity, multimodality, skewness and 
kurtosis. Viewed theoretically, the switching models emit mixtures that help us to 
describe more adequately (without being disturbed by outliers) time series with peaked 
and heavy-tail distributions. The evolution of the spread shifts between high and low 
mean regimes, and it can stay there for prolonged periods of time. While using 
regime-switching spread models is theoretically appealing, they often cannot achieve 
satisfactory fitting accuracy on practical financial data because of the unobserved 
nature of the hidden regimes (which are technically very difficult to infer). Rather 
such models can be useful for detecting turning points between persistent (not sudden) 
changes in time series [13]. The switching models are usually outperformed even 
by ordinary time-varying parameter models obtained by rolling regression.

Our research develops machine learning tools for statistical arbitrage with continuous 

mixture models. These are continuous mixture models for mean-reverting spreads based 

on a discrete version of the Ornstein–Uhlenbeck stochastic differential equation. They 

are calibrated online with computationally efficient mixture filters to obtain plausible 

parameter estimates on the typically non-Gaussian financial data. Our tools have two

distinctive advantages: 1) the filters are applied to heavy-tailed models elaborated with
dynamic scale-mixtures of normal and gamma densities (that actually approximate 

Student-t distributions), and 2) they perform robust sequential Bayesian estimation of 

the parameters. Overall, these are learning machines that carry out predictive adaptation 

of the models to the changes in the markets via forecasting of their time-varying 

parameters. The filtering algorithms adjust dynamically the hedge ratios between the 

assets with the arrival of data over time, and this helps to achieve better exploitation 

of arising arbitrage opportunities.

Current experiments show that our tools have potential to generate excess returns when 

applied to a pairs trading task [3] (the spread is computed from two stocks only, whose 

price movements are cointegrated): betting on the prices of Coca-Cola ('KO') and 

Pepsi ('PEP') during the recent period between 1 january 2010 and 30 december 2018. 
The model parameters were taken to calculate the normalized spread (z-score) and 

trading positions were opened/closed when the z-score exceeds the predefined limits of 

the mean-reverting behaviour. We used a trailing period of 30-day data window, and 

performed signal computations on closing prices from the last trading day. The 

econometric performance estimated with one-step ahead predictions of the last 2150 
days was as follows: Success rate 72.02%, Cumulative return [PnL] 275.28%, 
Annualized Mean return 32.06%, Annualized StDeviation 18.48%, Annualized Sharpe 
ratio 1.37, and Maximum Drawdown 0.0386. The real total profit was 1.68 times the 
Gaussian model profit, and 2.54 times the buy and hold profit. The plots in the figure 
below illustrate the spread with the buy/sell threshold lines (in the middle pannel), the 
profit from our robust heavy-tail (non-Gaussian) model with the red curve, the profit 
from a linear Gaussian model with the light green curve, and the profit achieved 
using the buy-and-hold strategy with the black curve (in the bottom pannel).
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