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The computerized trading systems become increasingly popular due to the electronic nature of the transactions executed on most of the stock markets. There are various computational algorithms for 
financial investing currently running on the electronic trading exchanges. Among these, increasingly 
popular become the machine learning algorithms for building portfolios of assets [1],[2],[3],[4]. These 
learning machines offer potential for finding optimal allocations and suggests efficient rebalancing 
which helps to maximize profits while minimizing the risk. They carry out not simply statistical analysis 
of financial data, but also identify temporal dependencies that are useful for describing the evolution 
of sequentially arriving asset prices. Having such capacity is useful when conducting search for 
profitable allocations in a selected universe of stocks. 
There are two main approaches to computing trading signals for investment decision making:
1) indirect approach that involves fitting time series (of returns on prices), and uses the predictions to

generate buy/sell signals; and 2) direct approach that involves optimizing directly some financial criteria

(like the Sharpe ratio) and uses the results to generate trading signals. Although the indirect approach
is very popular in computational finance, its main idea to approximate and forecast financial series 
can not realized accurately, as it is well known that prices and returns are unpredictable. The idea of 
direct methods to produce trading signals without time series fitting is theoretically and practically 
more reliable. Moreover, the direct solutions match the goal of investors to maximize returns
without regard to any price approximation error.

The objective of online portfolio selection [1] (called also short-time portfolio optimization [3]) is 
to increase gradually the cumulative wealth by maximizing gain increments at each time step,
instead of batch (offline) maximization of the overall return with some quadratic objective function

(which is numerically difficult and problematic). Recent research investigates various algorithms
for online learning of portfolio allocations (weights), like: OLMAR [1], [5], SSPO [3], TCO [6], etc.. 
These algorithms are computationally fast and can achieve good results, because they react fast to 
changes in the market, but this flexibility makes them unstable. One reason for their instability is that 
they perform weights updating which reflects the movements of the series and, therefore, are behind 
the real evolution of data. The better alternative to capture the movement with perespective is by 
exploiting the hidden dynamics of the series. This can be achieved using dynamic models that 
represent  time dependencies (they describe accurately data whose characteristics change
over time), such as NARMA recurrent neural networks [7].

A portfolio machine for direct maximization of the Sharpe ratio based on recurrent networks has 

already been proposed using principles from reinforcement learning [8]. The network training procedure

optimizes iteratively an economic performance criterion by passing the output positions again to the
model as delayed feedbacks on its action. These action feedbacks serve as rewards that reinforce the 
parameter updating so as to increase the model utility (risk-adjusted growth) with respect to the Sharpe measure. Thus, the algorithm continuously maximises the performance using the feedback action signals without forecasting returns and without handling noisy covariance matrices. The performance function accounts also for transaction costs, and depends on the trading history. The impact of the historical data
requires to use proper temporal training. 
Our research developed a Reinforcement Learning machine for Online Portfolio trading (RLOP) using 
a recurrent neural network. The network model takes as inputs series of returns from the assets in the 
portfolio, and outputs allocations for each asset (the current version generates long only trading sugnals). 
The recurrent network is suitable for representing financial time series as it is especially designed to learn from sequential data via an internal memory. The memory maintains short-term temporal information 
which influences subsequent outputs. This network is a dynamic model that we treat with a proper dynamic 
training algorithm, the so called BackPropagation Through time (BPTT) [9]. A distinguishing feature of 
our machine is that we implement the BPTT with a modern stochastic gradient descent technique [10] for computing the temporal derivatives (it helps to obtain unbiased parameter estimates). This technique is further elaborated using momentum and adaptive learning rate for switching between passive and 
aggressive updating depending on the recent profitability.

We conducted experiments to study the usefulness of our tool RLOP and to relate it to representative
state-of-the-art online portfolio selection algorithms: the SSPO [3], the OLMAR[5] and the TCO[6]. 
Stock prices from four major indices were downloaded from the Internet as follows: 
SP500 (2/1/2019-30/12/2019, 485 stocks), DJIA30 (2/1/2017-30/12/2017, 30 stocks), 

FTSE100 (2/1/2017-30/12/2017, 100 stocks), and NYSE/Nasdaq (2/1/2015-30/12/2015, 484 stocks)
(stocks whose data were incomplete were discarded). Using an unsupervised learning procedure we 
selected 10 stocks from each data set for building the portfolios. Transaction costs (0.25%) were 
incorporated according to the proportional commission model [1]. Specific for RLOP is that it uses 
historic prices from the last month to train the model. The SSPO provides an original formulation with proven convergence (the function to be optimized has a unique minimum), which is processed with an iterative algorithm derived following the alternating direction method of multipliers. The TOC and 
OLMAR exploit the mean-reversion concept using an incremental algorithm which updates the 
allocations so that the wealth is transferred from stocks that have increased in value toward stocks 
that have decreased in value (with the expectation that this will change). 

The usefulness of the examined algorithms was evaluated with two statistics (as in similar research [5],[6]): the Annualized Percentage Yield (APY) as a measure of the accumulated wealth, and the annualized 
Sharpe Ratio (SR) as a measure of the risk-adjusted returns. The results given in the table below include 

the APY and the corresponding SR in parentheses.
-----------------------------------------------------------------------------------
                         SP500          DJIA30        FTSE100        NYSE   
-----------------------------------------------------------------------------------
 OLMAR         0.3289          0.2265           0.1624           0.1465
                   

                       (1.8783)        (2.1648)        (1.2495)        (0.6231)             
  TCO             0.4231           0.2149           0.2235           0.2914 
           
                      (2.0126)         (2.1450)        (1.3682)        (0.8353)               
  SSPO           0.4075 
         0.1637           0.1076           0.1295 
          
                      (1.9372)         (1.9536)        (0.9281)        (0.6018)                
  RLOP          0.4875 
         0.1807           0.1344           0.1569 
          
                     (2.1942)          (2.0326)        (0.9327)        (0.6477)               

----------------------------------------------------------------------------------
The results in this table demonstrate that: 1) the RLOP algorithm outperforms the previous strategies 
only on the SP500 dataset (as it achieves best APY and best SR), so it can not be expected to be 
better than the previous alternatives in all markets, and 2) the previous mean-reversion algorithms can 
really be profitable across different markets, although they can be unstable in some environments. We 
are inclined to think that it is very difficult to capture the dynamics of financial time series in functional 
form even with powerful recurrent neural network models used within the framework of reinforcement learning. The following figure illustrates the instantaneous Sharpe ratio (blue curve) that is optimized 
directly during trading, and the continuously accumulated Sharpe ratio of the whole portfolio (red curve)
obtained during simulations using the SP500 series.
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