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The task of portfolio construction involves search for asset allocations that can bring maximum

profit with minimum risk. A key element in the mean-variance portfolio (MVP) framework [1] is 
the covariance matrix (with second order moments) of returns. This matrix is also crucial for balancing
the risk when implementing modern smart beta portfolios. The challenge is to find faithful and useful estimates of the covariance matrix (given noisy and volatile price series) which lead to profitable 
portfolios on unseen (out-of-sample) data [2]. The covariances are often calculated by Exponentially
Weighted Moving Averaging (EWMA) [3] of the rolling historical returns. This sample-based approach

However does not deliver good performance in practice [4] because the interactions of the individual 

assets change with the time. Recent research [5],[6] achieves improved results using approaches that 
forecast the covariances, like the Dynamic Conditional Correlation (DCC-GARCH) [7], and the 
Generalized Principal Volatility Components (GPVC) analysis [8]. Common in these approaches 
is that they build multivariate volatility models.
The multivariate volatility models learn functions of the previous returns and the errors from the 
mean processes in several time series. There are some specific issues in the design of such models: 

1) how to use the time as a parameter influencing the mapping so as to capture well the dynamics 

of the data; 2) how to accommodate the relationships between the individual series into a multivariate

structure; and 3) how to specify the data distribution in order to hande adequately the noise. The

DCC-GARCH [7] are Gaussian multivariate volatility models which represent flexibly the dynamics

of time series are appropriate for covariance prediction. However, they are calibrated with static
optimization algorithms that do not treat explicitly the dynamics during training (that is, they do 

not exploit fully the temporal capacity of the model). Moreover, the standard optimizers are 

computationally fragile on processing multivariate GARCH models.
Our research developed a deep learning tool for multivariate nonlinear MNGARCH [9] volatility

models, which is especially suitable for construction of variance-based portfolios. This tool 

provides several original features: 1) it uses nonlinearities for enhancing the model potential to 
describe complex patterns in real-world financial time series; 2) it treats the model with a proper
temporal training algorithm which tracks the time-varying characteristics in the data and 
preserves the model dynamics; and 3) it uses the t-Student distribution in the training objective 
function for accurate fiting of data coming from heavy-tailed distributions (like returns on prices).

The multivariate nonlinear MNGARCH  model is represented as a multi-output recurrent neural 
network. The network accepts as inputs returns as well as volatilities (stored in the network memory) 
through feedback connections. The recurrent network is trained with a temporal gradient descent 
algorithm (called Back Propagation Through Time (BPTT) [10]) after unfolding it in time. This 
algoritm creates a deep neural network structure by making temporal copies of the nodes, and 
duplicating the memory as well as the recurrent connections. The weights are kept the same in 
the entire unravelled network architecture. The BPTT tunes gradually the weights and, thus, adapts 

the model output to the trajectory of the given data sequence (this is a computationally efficient

deep learning algorithm that does not require optimization routines). The operation of the gradient
descent learning procedure is robust thanks to the adoption of the heavy-tailed noise distribution, 
and it is not disturbed by occasional outliers in the data.

An experimental study was performed to examine the suitability of the proposed multivariate 

MNGARCH tool for building mean-variance portfolios. We downloaded daily closing prices of 
all stocks from the S&P500 index from the Internet (8/4/2019-18/12/2020). Five stocks with
uncorrelated price movements were selected, and next their prices were transformed into daily 
returns. After closing of each trading day, the mean-variance portfolio weights were computed 
recursively (with closed-form formulae [11]) using returns from the previous three months, and 
the covariance matrix was determined by pluging the forecasted volatilities according to a technique suggested in previous research [2]. Two volatility models were used for comparisons: the MNGARCH 
and a standard linear GARCH. The trading was initiated starting with 10000 pounds, and the full 
portfolio value was reinvested during rebalancing. The performance and risk statistics of the 
constructed portfolios using GARCH and MNGARCH are presented in the table below.

---------------------------------------------------------

MVP Portfolio/CovMatrix        GARCH       MNGARCH         
---------------------------------------------------------
Performance Statistics: 
   Cumulative returns [PnL]   28.83%        58.21%        
   Compounded returns          0.32%         0.64%         
   Mean return                 6.40%        11.56%        
   StDeviation                14.85%        15.17%        
   Skewness                   -0.92%        -0.95%        
   Kurtosis                   12.37%        10.18%         
   Sharpe ratio                0.48%         0.71%         

Risk Characteristics:                                               

   Sortino ratio               2.81%         3.42%         
   Value-at-Risk (CFVar)       5.66%(3.04%)  6.19%(3.23%)  
   Expected Shortfall          2.94%         4.38%         

   Maximum Drawdown           10.93%        13.02%        
---------------------------------------------------------
Overall our research found that considerably improved portfolios can be obtained with 
covariance matrices forecasted by multivariate nonlinear MNGARCH models. We think that

not only the MNGARCH model, but also the efficacy of the temporal training algorithm play
an important role for achieving much more useful covariance predictions. The evolution of 
the covariance matrix in time is illustrated in the figure below with plots of the percentage 
of explained viariance by its three principal components.
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