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Connectionist learning offers powerful modern technologies for quantitative modelling that can be
used to reduce investment risk. It provides highly nonlinear models which are convenient for
describing multivariate time series of returns on prices. Such connectionist machines that become increasingly popular in financial engineering are the Deep Neural Networks (DNN) [1]. They 
find complex functions by composing simple representations, and extracting essential features 
from data. The DNN have already been applied to predict stock returns for building portfolios. 
The most popular deep networks for such tasks include the recurrent Long-Short Term Memory 
(LSTM) [2],[3] neural networks, the Deep Multilayer Perceptrons (DMLP) [4],[5], and the 
Convolutional Neural Networks (CNN) [6]. The attractive fundamental concept underlying all 
these deep networks is nonlinearity. The nonlinearity is especially important when searching 
for models that generalise well, that is perform well on unseen future data. 
Efficient learning of well forecasting nonlinear models can be achieved using deep multilayer 
networks with Rectified Units (ReLU) [7]. These are units with non-saturating activation 
functions returning only the positive part of their argument. The employment of rectified units 
in DNN networks brings several important characteristics: 1) they contribute for accelerating the convergence during the search for parameter values (settling faster at lower minima with smaller 
errors); 2) they help to propagate better the gradients during training (avoid the exploding/vanishing 
gradient problem); and 3) they promote structural sparsity as only subsets of units become active 

(which helps for improving the predictability). Moreover, good results can be obtained after training 
them with static algorithms that are easy to tune and control. The rationale is that having sufficient nonlinearity compensates the need for dynamic processing which is difficult. 

Although theoretically appealing the DNN tend to overfit the data and often do not produce

good forecasts. The problem is that these networks are large (with many parameters), and require 
special training mechanisms to prevent overfitting in addition to the structural sparsity. One simple
approach is the dropout technique [8], which is implemented by dropping out hidden units during 

training with certain probability (putting Bernoulli gates on the connections). The dropout stimulates 

learning data from different segments by causing perturbation on each data point. Thus, it actually

discourages coadaptation between the local models accommodated in each neuron, and leads to

improvement in the generalization (that is, learning beyond the given data). There is a droput
hyperparameter which has to be tuned carefully for reaching optimal performance.

Our research developed an original Robust DNN (RDNN) model with rectified and sigmoidal 
units especially for building prediction-based portfolios. This is a multi-output network that

captures time relationships in the data using a short-term memory through a tapped delay line from 
lagged observations. The major technological innovation in the RDNN is that it overcomes possible disturbances from outliers using the heavy-tailed (Student-t) noise distribution [9]. Adopting the 
Student-t distribution for the noise is important for handling practical financial time series because 
the estimates can be affected severely by atypical observations. Moreover, the departure from 
Gaussianity influences the model selection and may lead to choosing a network model with wrong 
complexity. We obtained robust derivatives and plugged them into a stochastic gradient descent 
training algorithm. The RDNN attains good generalization as it avoids overfitting using two 
techniques: structural sparsity (attained with the rectified units which induce sparsity) 
and dropout (which helps to avoid overtraining with the provided examples).

Experimental investigations were conducted to examine the suitability of the proposed RDNN 
tool for building mean-variance portfolios. Daily closing prices of all stocks from the S&P500 index 
were downloaded from the Internet (4/2/2019-30/10/2020). We selected 15 stocks with uncorrelated 
price movements, and next transformed their prices into daily returns. These returns were passed as
inputs to the multioutput RDNN, and the one-step ahead forecasts of the returns of each stock were 
used to compute mean-variance portfolio allocations. After the closing of each trading day the portfolio allocations were recomputed after retraining the RDNN over data from the previous one month. The 
trading was initiated starting with 10000 pounds, and the full portfolio value was reinvested when rebalancing. The performance and risk statistics of the obtained portfolios (RDNNP) are compared 
with these from the convential approach (MVP) using averaged historical returns in the table below.

---------------------------------------------------------

Portfolio                       MVP         RDNNP         
---------------------------------------------------------
Performance Statistics: 
   Cumulative returns [PnL]   40.68%        43.42%        
   Compounded returns          0.41%         0.45%         
   Mean return                 8.59%         9.04%        
   StDeviation                16.75%        16.53%        
   Skewness                   -0.86%        -0.87%        
   Kurtosis                    9.62%         9.41%         
   Sharpe ratio                0.51%         0.55%         

Risk Characteristics:                                               

   Sortino ratio               2.23%         2.38%         
   Value-at-Risk (CFVar)       4.57%(3.93%)  4.51%(3.83%)  
   Expected Shortfall          2.62%         3.02%         

   Maximum Drawdown           12.77%        12.09%        
---------------------------------------------------------
These results demonstrate that the RDNN portfolio outperforms the traditional MVP portfolio. The

main reason is that the predicted mean retutns using the RDNN are closer to the short-term future

returns than the estimated averaged returns using the historical prices, which means that the deep 
network model can really learn and predict well the mean of the recent returns. Overall, these successful experiments suggest that the novel RDNN is a promising tool for practical portfolio management. 
The angle histogram below illustrates the distribution of the allocations of each of the 15 stocks.
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