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Index tracking [1],[2],[3],[4],[5],[6] is a popular investment strategy for building portfolios 

of assets that replicate closely the movement of a benchmark index. The key idea is to find 

optimal subsets of assets (partial replication) that regularly outperform the market. This is

accomplished by extracting a few representative assets that can be traded with less transaction 

costs and reduced risk [7]. The management risk can be reduced using small portfolios which 

faithfully represent the hidden structure of the market (that is, the relationships between the 

index constituents), and decrease the exposure to unimportant assets.

The construction of small index portfolios includes two steps [2],[5],[6]: stock selection 
and capital allocation. The stock selection is a search problem which can be addressed in

different ways, for example using: clustering algorithms [1], genetic algorithms [2], 
variable selection algorithms [3], deep learning algorithms [5], etc.. The capital allocation 
is a constrained optimization problem that can be tackled using quadratic programming 
solvers [6]. These solvers minimize the tracking error between the returns of the portfolio 
and the benchmark index. The alternative is to use a combined (one-step) approach for joint 
stock selection and calculation of the allocations. However, it has been found that this combined 
approach has unstable performance when typically implemented using penalized regression 
for dimensionality reduction via parameter shrinking (since often the returns are collinear) [7],[8]. 
Heuristic evolutionary algorithms [9],[10] have also been considered for index tracking, but 
they are not guaranteed to arrive at an optimal solution, moreover they are computationally 
intensive. The challenge is that in practice the number of index constituents is very large 
which requires efficient algorithms.
A reliable alternative for stock selection offer the deep neural networks called Autoencoders 
(AE) [11]. They are especially suitable for dimensionality reduction in multivariate time series 
of asset returns and feature good convergence properties.  An Autoencoder network compresses 
the latent information in the inputs using compact hidden layers of neurons. The noisy inputs are 
next restored by decomposition using the hidden neuron outputs. The AE network architecture can 
be modified automatically during training, and so it can discover the dominant factors in the data. In 
context of the portfolio selection task, the AE can identify the minimal number of assets that together explain the maximal information in all of them. Recent research [5] used the dropout technique which temporarily deactivates randomly chosen nodes, but this is not sufficient to achieve reliable learning 
of small models from very noisy financial data. Rather, some of the hidden neurons (representing the latent data dimensions) should be removed completely from the model.
Our research developed an original approach to building small portfolios through deep learning 

of sparse autoencoder (SAE) models. The SAE models are trained using specialized topology 

reshaping techniques which help to identify less complex models that capture the essential 

structure in the data. We elaborate two techniques that enforce reshaping: 1) soft sparsification 

with size-adjusting regularization that drives the irrelevant hidden node outputs to zero, and 
2) hard sparsification by explicit pruning of redundant hidden nodes without loss of accuracy 

(using predefined importance criteria). The desirable sparsity level (percentage of nodes to be

truncated) is controlled  with a cardinality parameter which allows to set the desirable size of the

investment. The SAE are trained with modern stochastic gradient training algorithms [11] and

are made robust to error fluctuations using the heavy-tailed (Student-t) density to handle the 
output noise. The practical effect from such robust treatment of the model is lower variability 
of the results and risk reduction. 
While the deep learning SAE models are suitable for stock selection, they are not convenient 

for computing the capital allocations (as suggested in previous research [5]) because they 

can not accommodate flexibly the required constraints (like, all allocations should sum to one, 
and short sales should be forbidded). That is why, a quadratic programming (QP) routine is taken

to search for optimal allocations that lead to close movements of the pre-selected portfolio 
returns and the benchmark index returns. More precisely, we elaborated an interior-point QP 
method for proper constraint optimization with an objective function that accounts for the
tracking error. The minimization of the tracking error helps to find asset distributions with 
which the portfolio follows adequately  the trend in the index over time, and 
this contributes for achieving good performance.
Processing Real-world Data. We developed a novel robust tool for small portfolios 
using the proposed deep learning SAE models which was applied to track the NASDAQ 
Biotechnology (^NBI) index (in order to facilitate comparisons with relevant recent 
research [5]). Weekly closing prices of 79 stocks (the remaining stocks were discarded 
as they contained missing values) were downloaded from the Internet (6/1/2012-19/4/2016). 
The in-sample training period was 6/1/2012-30/12/2013 (104 samples), and the remaining 
period was for out-of-sample testing. The SAE was calibrated on the in-sample data with 
sparsity level 20%, and it selected 14 stocks whose allocations for smart indexing were 
estimated using the QP routine with budget and long only constraints.
Experimental Analysis. The efficiency of the SAE portfolio formation approach was compared 
with that of a combined approach using penalized LASSO-regression [3]. The penalized 
LASSO-regression was estimated using the same QP optimizer, and it was tuned to pick the 
same number of 14 stocks to make fair comparisons. The training Annualized Tracking Error (ATE) 
(on the in-sample data) of the portfolio from the combned algorithm ATE= 2.89% was smaller 
than this from our SAE tool which was ATE = 4.98%. However, the profits from the SAE 
portfolio were much higher than these from the combined algorithm portfolio, whose profits 
decreased during the future period (on the out-of-sample data). The reason is that SAE provides 
a robust deep learning mechanism which avoids overfitting (that is, replicating very closely) 

the noisy financial data, because: 1) the sparsification techniques force it during training to 
generalize better, and 2) the robustification using a heavy-tailed noise model diminishes the 
effect of outliers. This is what helps to achieve algorithm stability (small changes in the data 
change only slightly the results) and to choose stocks that more faithfully represent the structure 
of the market. Although we tuned carefully the regularization parameter in the regularized 
tracking error for the LASSO-regression, the combined algorithm still overfitted the data, and
that is why the resulting portfolio failed to beat the index on the future period.
Performance Comparisons. The figure below illustrates that the cumulative profits from the small 
SAE portfolio (given by the brown curve for in-sample period and the red curve for the out-of-sample 
period) consistently outperforms the benchmark (given by the blue curve), while the portfolio from 

the combined approach (given by the dark and light green curves) exhibits unstable behaviour.
The plot below shows also the profits from a two-step approach using the popular hierarchical 
clustering (given by the the dark and light cyan curves). One can see that using the recommended 
correlation distance measure for clustering [12] the constructed portfolio outperforms the combined approach but not the deep learning approach. Overall, these results indicate that the proposed 
approach to deep learning of sparse autoencoders offers a reliable modern alternative for creating indexing portfolios.
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