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Covariance matrices are important in modern portfolio theory [1] as they provide information 
about the collective movement of asset prices and help to achieve efficient portfolio selection. 
The covariance matrix shows the interactions between assets, and indicates which combinations 
can yield maximum profits with minimum volatility (reduced risk) [2],[3]. The particular asset 
allocations (portfolio weights) are typically found by optimization using the sample covariance
matrix. The estimation of the sample covariance matrix however is problematic: when there are

many stock price series of limited duration their statistical characteristics can not be determined accurately as their computation accumulates significant errors. The reason is that financial data 
are typically contaminated by large amounts of noise, while standard estimation procedures can 
not remove the noise and fail to identify adequately the structure of dependencies among the

stocks in the market. Using a distorted matrix for optimization results in inaccurate weights and 
leads to portfolios with unsatisfactory performance. Robust portfoilios can be designed after 
cleaning the covariance matrix in advance.
Current research investigates various covariance matrix cleaning techniques for building improved portfolios [4],[5],[6]. There two main groups of such techniques: 1) random matrix theory (RMT) 
filtering [7], and 2) shrinkage [8]. The RMT suggests that only the largest eigenvalues of the matrix 
give valuable information about the cross-correlations, while the remaining are random noise and 
can be discarded (because the remaining smaller eigenvalues represent deviations from the true 
joint moments of the data). The shrinkage replaces the overfitting matrix by a linear combination 
of that covariance matrix with another underfitting estimator, and this is achieved with a combining coefficient which helps to adjust the model structure to the data. Technically speaking, the extreme 
matrix entries are pushed or pulled to the centre values of the distribution of covariances.
Although these statistical approaches to covariance matrix cleaning may seem interesting, they 
have several drawbacks that limit their applicability to real-world stock market data: 1) they use 
historical prices which do not account for future price dynamics of the naturally changing markets 
(the past behaviour of the markets may not be consistent with the future); 2) they are based on 
the the assumption that returns follow a Gaussian distribution, while returns on prices are often 
found to be non-Gaussian [9], and 3) they are sometimes computationally unstable [6].
Our research developed an original technique called Autoencoder Machine (AEM) for deep 
cleaning of covariance matrices. The AEM uses a deep neural network [10],[11] that learns 
parameters corresponding to the directions of maximum variance of the input data. The training 
searches for smoother network mappings and finds denoised versions of the eigenvectors of the covariance matrix which help to recover its genuine structure. The novel technique achieves such 
effects due to the following advantages: 1) it performs predictive cleaning in the sense that it enables 
to forecast the elements of the covariance matrix after training with the given past data; 2) it handles 
the given data with a heavy-tailed (Student-t) distribution which is well known to be more realistic 
for treating returns on prices [9]; and 3) it uses a probabilistic Bayesian procedure for model 

calibration. The Autoencoders [11] are especially convenient for large scale problems as they 
can be trained reliably with modern stochastic gradient descent algorithms.
Processing Synthetic Price Series. Experiments have been conducted to find out how well the 
above techniques can clean covariance matrices made from series with known characteristics. 
We implemented and tested: 1) the RMT filtering technique [6],[7]; 2) the Ledoit-Wolf shrinkage 
(LWS) estimator [8], and 3) the developed deep learning Autoencoder (AEM). Realistic covariance 
matrices were simulated according to a recent method [12] that associates them with fractional 
Brownian Motion (FBM) processes having long memory (we used Hurst parameter value 0.8). 
More precisely, the elements of the covariance matrix were computed with a concrete formula for 
the autocorrelation function, and next they were randomized. There were synthesized 10,000 

matrices of size 500 rows (time steps) and 300 columns (dimension). The errors were evaluated 
using the Frobenius norm distance measure as recommended [8]. It was found that the AEM machine 
achieves improvement by about 5% compared to the RMT filtering technique, and by 6% compared

to the Ledoit-Wolf shrinkage (LWS) estimator in the sense that it achieves lower average errors.
Building Real-world Portfolios. A comparative study was performed to analyze the impact of 
different covariance matrix cleaning techniques on practical portfolios. We implemented a trading 
tool that computes mean-variance portfolios using a risk aversion parameter (balancing reward 
and risk) [3]. The trading simulation did not consider risk-free assets, and the allocations were not 
constrained to reveal the effects mainly due to denoising. Daily closing prices of 20 stocks from 
the technology sector (with tickers: GOOGL,AAPL,MSFT,MU,INTC,CSCO,BIDU,ADBE,TXN,
AVGO,QCOM,AMT,HPQ,IBM,ORCL,NTAP,GLW,AMAT,AMZN,LOGI) were downloaded 
from internet (1/6/2015 - 1/6/2017). The data from the first year were taken for training and the 
future data from the next year were considered for testing. 
The table below offers portfolio statistics obtained using the common metrics: annualized rate of 
return, volatility, and Sharpe ratio. These results show that the developed AEM technique leads to improved out-of-sample performance and increased mean-variance efficiency. More precisely, it 
finds allocations with which the profitability of the portfolio increases by 35% compared to the 
RMT, 41% compared to the LWS, and 44% compared to the Benchmark portfolio (using directly the 
uncleaned sample covariance matrix). What is important to note is that the novel AEM denoising 
helps to reduce considerably the risk (it leads to efficient portfolios with higher Sharpe ratio).

-----------------------------------------------------------------------------
 MVPortfolio      Rate of Return        Volatility        Sharpe ratio     
    statistics            (annualized)       (annualized)      (annualized)   
 ----------------------------------------------------------------------------
 Benchmark 
         0.4284 
             0.2200 
  1.8564            
 RMT filtering         0.4777 
             0.2386 
  1.9180            
 LWS shrinkage       0.4398 
             0.2317 
  1.8120             
 AEM learning         0.6283 
             0.2341 
  2.1274 
  
 ----------------------------------------------------------------------------------------------
The figure below illustrates the profits (cumulative wealth) calculated with the implemented 
techniques: LAE wealth with the red curve, RMT wealth with the green curve, the LWS with 
the light blue curve, and the Benchmark with the blue curve (the initial darker color curves 
were obtained with the past training data, and the brighter color curves were obtained with the 
future testing data). Overall, this research showed that deep learning of the covariance matrix 
leads to more accurate weights and more profitable portfolios.
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